

Indiana University
Media Digitization and Preservation Initiative (MDPI)

White Paper:

Encoding and Wrapper Decisions and Implementation for
Video Preservation Master Files

Authored by:

Mike Casey, Director of Technical Operations, MDPI

Reviewed by:

Carla Arton, Film Digitization Specialist, IU Libraries Moving Image Archive
Jon Cameron, Digital Media Service Manager, IU Libraries

Jon Dunn, Assistant Dean for Library Technologies, IU Libraries
Heidi Kelly, Digital Preservation Librarian, IU Libraries

Brent Moberly (Appendix author), Software Developer, UITS, IU
Brian Wheeler, Senior Systems Engineer, IU Libraries

Special thanks to Dave Rice for astute comments and suggestions

Copyright 2017 Trustees of Indiana University

This document is licensed under a Creative Commons Attribution 4.0 International license (CC
BY 4.0) https://creativecommons.org/licenses/by/4.0/

Release date: March 27, 2017

https://creativecommons.org/licenses/by/4.0/

2 | P a g e

Indiana University
Media Digitization and Preservation Initiative

Encoding and Wrapper Decisions and Implementation for
Video Preservation Master Files

1. Overview

There is no consensus in the media preservation community on best practice for
encoding and wrapping video preservation master files. Institutions engaged in long-

term video preservation typically choose from three paths, each of which are currently
seen as viable for this purpose:

 10-bit, uncompressed, v210 codec, usually with a QuickTime wrapper

 JPEG 2000, mathematically lossless profile, usually with an MXF wrapper

 FFV1, a mathematically lossless format, with an AVI or Matroska wrapper

No single path can be said to be widely adopted, in part because there are relatively few
institutions engaged in digitizing video for long-term preservation, especially at scale. It
appears as of this writing that institutions are roughly evenly divided between the three

paths listed above.

The intense interest and uncertainly in the media preservation community surrounding
these issues prompted us to write this document. In doing so, our objective is to report

in detail on a set of choices and an implementation that has worked well for our
preservation project. We do not hold this up as a unitary best practice or as a solution

for every project. Rather, we hope that it will provide useful information to others who
are walking the same path.

2. IU Application

Indiana University engaged with this issue for its Media Digitization and Preservation
Initiative (MDPI)1 which is charged with digitally preserving all significant audio and
video recordings on all IU campuses in time for the University Bicentennial in 2020.
Under this initiative, IU expects to digitize approximately 78,000 standard definition
video recordings. The bulk of the digitization work is undertaken by IU’s private partner,
Memnon Archiving Services, with the remainder completed by a smaller IU-run facility.
Memnon mainly uses parallel transfer workflows where one operator digitizes more

than one videotape at a time. IU Media Digitization Studios handles tapes with problems

1 See https://mdpi.iu.edu/ for further information on MDPI

https://mdpi.iu.edu/

3 | P a g e

that are not appropriate for a parallel transfer workflow and digitizes them primarily

with a 1:1 workflow.

3. History of this issue at IU

3.1 Planning project working group

Indiana University's earlier Media Preservation Initiative (MPI) planning project engaged
in an extensive review of video preservation options in 2011-12. At the time, path 3
above (FFV1) was not widely known and was adopted by only a couple of institutions.
MPI chose the 10-bit uncompressed path, in part because of interoperability problems
with different implementations of JPEG 2000/MXF lossless as well as greater technical
complexity and a lack of available tools for this option. It was felt that JPEG 2000/MXF
presented greater risk for us over time. The uncompressed option was viewed as
simpler, more widely adopted at the time particularly within the archival community,

and presenting fewer barriers to long-term preservation and access. This decision was
affirmed again later in the MPI planning project.

MPI chose 50 mbps MPEG-2 I-frame only as the codec for generating a single high-

quality “production master” (often called a “mezzanine” file). This format and its
particular configuration is in wide use in the broadcast community and is well-
supported. Restricting 50 mbps MPEG-2 to “I-frame only” preserves the integrity of the
frames from the analog source and enables easier editing.

3.2 Reconsideration under MDPI

In 2015 it appeared that FFV1 was seeing greater adoption and emerging as a
compelling alternative to uncompressed and JPEG 2000. The IU Media Digitization and
Preservation Initiative (MDPI) decided to reopen this decision and initiated a research
and review process. This process included the following steps:

3.2.1 Exit strategy research

This work involved defining a viable exit strategy by testing transcoding of FFV1 files to
uncompressed v210. Testing was carried by Brian Wheeler, Senior Systems Engineer for
IU Libraries.

3.2.2 Capture research

Memnon would use FFmpeg within their custom-built encoding system to generate

FFV1 files. However, the IU side of the operation also would require a way to create
FFV1 files. This work involved identifying tools that could be used for this purpose.

4 | P a g e

3.2.3 Comparison of issues

Utilizing work published by the Federal Agencies Digitization Guidelines Initiative

(FADGI),2 MDPI constructed a comprehensive comparison spreadsheet of the various
video preservation digitization alternatives. This spreadsheet was edited from the FADGI

original to include only alternatives and issues relevant to MDPI’s interests. This
facilitated direct comparison of the alternatives, identification of potential risks, and

assessment of advantages and disadvantages.

3.2.4 Consultation with an outside expert

MDPI engaged Chris Lacinak from AVPreserve for a phone call in which he and the IU
team discussed the advantages and disadvantages of the various alternatives.

3.3 Summary of research results

In our research into exit strategies we were able to move FFV1 files to a lossless codec
(H.264 lossless, JPEG 2000 lossless, VP9 lossless) with no loss of data. We were also able
to move to v210 uncompressed with minor and probably irrelevant loss. Working with
Dave Rice, we discovered that v210 itself is not strictly lossless. If implemented
correctly, v210 reserves the very high and very low sample values for synchronization
purposes. Observed samples in the reserved ranges are set to the closest valid value.
Not all encoders follow the v210 specification correctly – for example, Blackmagic will
use the reserved values for accurate sample values, thereby providing a true lossless
uncompressed file that is, nevertheless, not fully compliant with the specification. We
further roundtripped a valid v210 file through FFV1, resulting in exactly the original

content at the end of the process.

For further protection we discussed escrowing a copy of FFmpeg source (and/or a
working VM image with FFmpeg on it) if we are concerned that the format will not be

supported in the distant future.

Research into capture tools revealed that there are very few for FFV1. Our options
appeared to be the following:

 vrecord – a new application that works on a Mac
 Virtualdub with ffdshow-tryouts—Windows, 8 bit only, FFV1 version 1.1 only

 capture to v210 first then transcode to FFV1 using FFmpeg

 capture using FFmpeg which requires developing a simple capture tool

2 See http://www.digitizationguidelines.gov/guidelines/video_reformatting_compare.html

http://www.digitizationguidelines.gov/guidelines/video_reformatting_compare.html

5 | P a g e

Our PC environment, the desire to use the latest version of FFV1 (version 3) for critical

features, our requirement for 10 bit encoding, and our reluctance to expand and
complicate the workflow by capturing to v210 first, left us with the last alternative. We

developed specifications for a minimal capture interface that made use of FFmpeg for
encoding and wrapping the video data, providing the IU side of the facility with what

was required to capture video in this format. This also aligned us with Memnon which
was using a similar approach. We agreed with Memnon to use the same FFmpeg binary

so that problems on both sides of the facility are restricted to one version/approach and
can be troubleshot together. While this work required some developer resources,
neither IU nor Memnon found it to be a lengthy, burdensome, or particularly difficult
task.

4. Technical and strategic analysis

4.1 File format

Direct comparison of the strengths and weaknesses of the various alternatives identified

a number of key advantages to FFV1. Specifically,

 roughly 65% less data than a comparable file using the v210 codec
 open source, non-proprietary, and hardware independent

 largely designed for the requirements of digital preservation

 employs CRCs for each frame allowing any corruption to be associated with a
much smaller digital area than the entire file

 supports wrapper independent aspect ratio, color space, and interlacement
information

 alignment with FFmpeg (from which FFV1 is a byproduct) which is a well-
established, widely used, and open source cross-platform solution to record,

convert and stream audio and video3
 only two source code bases for creating FFV1 files—FFmpeg and LibAV—which

greatly reduces the opportunity for interoperability problems. LibAV forked from
the FFmpeg code base in March 2011

 intensive current development through the PREFORMA project in Europe to
create tools and take steps towards standardization

 while none of the alternatives can be considered widely adopted, FFV1 appears
to be trending upwards among developers and cultural heritage organizations
engaged in preservation work

Although MDPI had developed specifications for storage and networking around 10 bit

uncompressed preservation master files, it was considered a definitive advantage to

3 See https://ffmpeg.org/

https://ffmpeg.org/

6 | P a g e

reduce the amount of data that the project would generate by some 65%. This would

not only lessen storage costs but, of course, make network transmission consume less
time, creation and validation of checksums consume less time, etc. FFV1 uses variable

bit rate encoding so the size of the resulting file varies according to the nature of the
program content. In our experience we have seen an average of 33.2 GB per hour of

content in the FFV1 preservation master file. One blind but not entirely random
sampling of 20 files showed a range stretching from 12.97 GB per hour at the low end to

48.40 GB per hour at the high-end. The uncompressed v210 codec delivers file sizes on
the order of 100 GB per hour of content.

Working with open source software mitigates a number of risks associated with
proprietary applications within the context of long-term, stable, sustainable
preservation. This includes the risk that a vendor will go out of business or choose to
stop supporting proprietary software. Open source applications permit direct access to
their code base and having full rights to the source code means that a developer can

make the software functional should it become obsolete. In any case, obsolescence

does not appear to be an issue anytime soon as the FFmpeg and LibAV libraries are used
by most software tools that work with audiovisual files.

We also felt that the current work towards standardization was an advantage. The
international standards organization Internet Engineering Task Force (IETF) has
chartered a working group named “Codec Encoding for LossLess Archiving and Real -
Time transmission” (CELLAR) that is tasked with standardization of both FFV1 and
Matroska for use in archival environments and transmission.4 Tools for both formats are
under development by the part of the open source European Commission-funded
PREFORMA project that focuses on audiovisual files.5 These applications focus on the

validation and conformance checking of files against their official specifications. These
efforts seemed to us to bode well for stable future use of FFV1 and Matroska within

preservation environments.

4.2 Wrapper

While the IU team felt that the decision to use FFV1 was relatively easy to make, the
choice of wrapper format proved more difficult. FFV1 is sometimes used with the AVI
wrapper which is an older and more limited format than the alternatives. FFV1 data is
also wrapped using Matroska which is a newer, open source option. Matroska is more
flexible and is designed with preservation in mind but is not yet as widely used as AVI for

this purpose. The MOV format is also a possibility. Our understanding is that historically

4 See https://www.ietf.org/mailman/listinfo/cellar and

http://ashleyblewer.com/img/blewer_rice_ipres_status_of_cellar.pdf
for further information.
5 See http://www.preforma-project.eu/index.html

https://www.ietf.org/mailman/listinfo/cellar
http://ashleyblewer.com/img/blewer_rice_ipres_status_of_cellar.pdf
http://www.preforma-project.eu/index.html

7 | P a g e

the combination of FFV1 with MOV has presented technical problems but these

apparently have been recently resolved.

After much deliberation, consultation with several experts including Dave Rice, and
testing, we chose the Matroska wrapper (mkv). Matroska is an audiovisual container or

wrapper format that has been in use since 2002. Both the Matroska specification and its
underlying specification for EBML are at a mature and stable stage with thorough

documentation and existing validators. Matroska has recently gained native support in
the Windows OS and is also the basis for Google’s WebM format container. A number of
media communities have adopted Matroska, which has seen extensive Internet usage,
because of its features including extensible structured metadata, broad support of
audiovisual encodings, subtitle management, etc. Open source software developers
have built tools based on the Matroska specification for many years.6

It is possible for every node in a Matroska file to have an embedded CRC that provides a

checksum for the rest of the node. This has been incorporated into FFmpeg so every

Matroska file written by FFmpeg has this internal fixity, leaving only around 100 bytes or
so not protected. With this functionality, it is possible to identify the component of the
file that has changed thereby enabling part of a file to be rewritten while maintaining
fixity for other parts. As with FFV1, the standardization and tool development work
described above, which includes Matroska, appeared to us a positive evolution towards
sustainability for long-term preservation.

4.3 The future

Our reading of the future is that as more and more archives undertake video digitization

they will not accept older and limited formats (AVI) or formats developed primarily for
commercial and broadcast interests (MOV). Rather, they will be looking for standards -

based, open source options with features developed specifically for archival
preservation. Both FFV1 and Matroska are open source and are more aligned with

preservation needs than some of the other choices and we believe they will see rapidly
increasing adoption and further development. The currently active PREFORMA project

in Europe will begin the standardization process for both FFV1 and Matroska as well as
develop open source tools specifically addressing preservation needs. We also believe
that it is more fruitful, given our specific preservation requirements, to align ourselves
with the FFmpeg community rather than with QuickTime developers and Apple. Finally,
Matroska is simply a more flexible wrapper option than other alternatives.

6 For an overview of Matroska and FFV1 as well as an update on the status of the CELLAR working group
see: Status of CELLAR: Update from an IETF Working Group for Matroska and FFV1, Ashley Blewer and
Dave Rice, at https://mediaarea.net/Events/PDF/2016-10-03_iPRES_Status_of_CELLAR.pdf

https://mediaarea.net/Events/PDF/2016-10-03_iPRES_Status_of_CELLAR.pdf

8 | P a g e

5 Implementation

5.1 Software development

As discussed above, both IU and Memnon chose to develop their own applications to
use FFmpeg to capture data from digitization as FFV1/Matroska files. Details of the IU

capture tool are presented in the appendix below. It took one IU developer roughly one
month to develop the initial release for the IU application. Of course, there has been

some maintenance and updating of the software since deployment.

5.2 Quality control

IU developed a quality control program to validate that the output of both the Memnon
and IU digitization operations meets IU’s specification for long-term preservation. This
work includes checking the FFV1/Matroska preservation master files. These files are
viewed using the VLC media player, a free open source cross-platform multimedia player
that supports FFV1 and Matroska.7 Metadata relating to these files is examined using

MediaInfo, a widely-used free open source program that displays technical information
about media files. IU QC also uses the free open source application QCTools which,

again, supports FFV1 and Matroska. QCTools enables deep, detailed inspection of video
signal characteristics in order to detect error. MDPI QC workstations have been set up

for 1 Gbps connections but have recently been upgraded for 10Gb over 50 micron
multimode fiber optic cable which enables relatively easy downloading of preservation

master files.

5.3 Unit access to files

IU media holding units—libraries, archives, departments, centers, etc.—are provided

with a tool that allows them to download files for the content they steward, including
FFV1/Matroska video preservation master files. This is done routinely for unit QC,

researcher requests, or other access needs.

6 Conclusion

At this writing, more than 38,000 video files have been created using FFV1 and

Matroska at Indiana University. Most of these were created by Memnon with a smaller
number recorded from digitization of problem tapes by IU Media Digitization Studios.

We have chosen two file formats that are open source, developed in part with
preservation in mind, and on the road to standardization with tools in active

7 See http://www.videolan.org/vlc/index.html

http://www.videolan.org/vlc/index.html

9 | P a g e

development. We have aligned ourselves with the large and active FFmpeg community

rather than a private company. While the future is ultimately unknowable, we believe
that this positions us well for long-term preservation of video-based content.

10 | P a g e

7 Appendix: IUMDS software implementation

IUMDS developed a capture application using FFmpeg to create FFV1/Matroska files.
Below is a description of this tool. Source code is available from
https://github.com/IUMDPI/IUMediaHelperApps

7.1 Overview

The utility is written in C#. It “drives” FFmpeg, which does all of the actual recording.
The recorder has additional functionality to support barcode scanners and to provide

rudimentary audio monitoring for the engineer.

The barcode scanner functionality allows the engineer to scan barcodes on objects to be
preserved rather than having to type them in manually. Code was adapted from these
two sources to implement the recorder’s barcode functionality:

 https://github.com/aelij/RawInputProcessor

 http://www.codeproject.com/Articles/17123/Using-Raw-Input-from-C-to-
handle-multiple-keyboard

For audio monitoring, the recorder uses the NAudio library
(https://github.com/naudio/NAudio). Essentially, the audio monitor allows the engineer
to verify that sound is coming into the system from the recording devices. Finally, the

utility uses FFPROBE to inspect the files it produces.

In terms of operation, there are three general steps: create, record, and combine.

7.2 The create step

In the “create” step, the engineer specifies the barcode, a file sequence number, the file
use, and the number of channels to record. The utility uses these selections to generate
a file name to use when recording and to drive FFmpeg in the recording step.

https://github.com/IUMDPI/IUMediaHelperApps
https://github.com/aelij/RawInputProcessor
http://www.codeproject.com/Articles/17123/Using-Raw-Input-from-C-to-handle-multiple-keyboard
http://www.codeproject.com/Articles/17123/Using-Raw-Input-from-C-to-handle-multiple-keyboard
https://github.com/naudio/NAudio

11 | P a g e

Here is a screenshot of the create panel:

7.3 The record step

The “record” step controls FFmpeg while providing a degree of status feedback to the

engineer. Here, the engineer can pause and restart the recording as required. The
record panel includes two duration timers, which display the total recording time and

the duration of the part in question, if the engineer has paused and resumed recording:

12 | P a g e

In the example, the utility has recorded 15.60 seconds of total video, with the current
part containing 10.83 seconds. While FFmpeg is running, the utility uses data from the

current FFmpeg log to advance both times. After recording has finished, the utility uses
FFPROBE to calculate the total duration of all parts more accurately.

The “clear” option allows the engineer to start over---it deletes the temporary recording

files and resets both timers.

The “pause” functionality was a bit of a challenge to add, as FFmpeg has no concept of
“pause.” Basically, the utility stops and restarts FFmpeg when the engineer hits pause.

Pausing and restarting the recording produces independent parts files which are then
concatenated in the “combine” step to make one complete file.

These parts are stand-alone video files in their own right, meaning they can be opened

and viewed, etc. The “parts” functionality is in place to allow the engineer to pause and

resume recording.

Part files are stored in the utility’s temporary directory with filenames indicating their
order. This is what they look like on the file system:

13 | P a g e

The utility also captures logs for each part it produces. These logs are stored alongside
the part files in its temporary folder.

While recording, the utility streams the contents of the current log file to its output
window. This window contains a volume display, a frame counter, and the text of the
current log:

14 | P a g e

The volume meter is rudimentary at best. Its purpose is not to replicate the functionality
of the volume meters on the engineer’s capture equipment, but only to provide visual

confirmation that sound is being captured as well as video.

The frame counter tracks the current frame and provides dropped and duplicate frame
counters. This information comes from the recording log and alerts the engineer if there

is a large number of dropped or duplicate frames.

The recording itself is done by FFmpeg. The utility generates a command-line based on
the options the engineer selected in the “create” step and starts FFmpeg with this

command-line.

This is the base production command-line:

-rtbufsize 1500M -stats -f decklink -i “DeckLink Studio 4K@1” -acodec pcm_s24le -strict -

2 -ar 48000 -vcodec ffv1 -level 3 -threads 8 -coder 1 -context 1 -g 1 -slices 24 -slicecrc 1 -
pix_fmt yuv422p10le

In two-channel mode, the recorder simply appends the appropriate file name to this

command-line. For example:

15 | P a g e

-rtbufsize 1500M -stats -f decklink -i “DeckLink Studio 4K@1” -acodec pcm_s24le -strict -
2 -ar 48000 -vcodec ffv1 -level 3 -threads 8 -coder 1 -context 1 -g 1 -slices 24 -slicecrc 1 -

pix_fmt yuv422p10le MDPI_11111111111111_part_00001.mkv

In four-channel mode, the recorder applies FFmpeg’s “channel split” filter as well:

-rtbufsize 1500M -stats -f decklink -i “DeckLink Studio 4K@1” -acodec pcm_s24le -strict -
2 -ar 48000 -vcodec ffv1 -level 3 -threads 8 -coder 1 -context 1 -g 1 -slices 24 -slicecrc 1 -
pix_fmt yuv422p10le -filter_complex channelsplit=channel_layout=15
MDPI_11111111111111_part_00001.mkv

The two-channel command-line produces a video file with a single two-channel audio
stream, while the four-channel command-line produces a video file with four single-
channel audio streams (one for each channel coming in from the engineer’s capture

devices). Note that filenames include a part specifier (“_part_00001”).

7.4 The combine step

The “combine” step creates the final video file. If there is only one part, the utility
simply copies that part to the output folder with the correct filename. If there is more
than one part, the utility uses FFmpeg to concatenate the parts into the final file. To do
this, it generates a directive file (“combine.txt”) containing all of the target parts, and
then runs FFmpeg with the following command-line:

-y -f concat -i "combine.txt" -c copy -map 0 "MDPI_11111111111111_01_pres.mkv"

This produces a single file from each of temporary parts file. We do not need to specify

format details here because all of the parts generated in the record step have the same
audio and video format, so FFmpeg can just combine the files without additional

conversion.

7.5 Configuration

The recorder is configured via its xml app.config file, Recorder.exe.config. This file allows
for the following to be specified:

ProjectCode The project code to use when
generating filenames

PathToFFmpeg The path to FFmpeg

PathToFFPROBE The path to FFPROBE

OutputDirectoryName The path to the folder that will
receive final, output files

16 | P a g e

WorkingDirectoryName The path to the utility’s working (or

temp) folder. This is where the
utility saves part files and logs.

AudioDeviceToMonitor The name of the audio device to
monitor while recording. This will

vary with your hardware (see

below)
FFmpegArguments The base arguments to use when

running FFmpeg

BarcodeScannerIdentifiers A comma-separated list of
identifiers associated with barcode
scanners attached to the system

In the case of the “AudioDeviceToMonitor”, the utility will suggest valid values if none

are present.

7.6 Memnon implementation

After analyzing commercially available solutions and deciding that more flexibility was
required, Memnon developed its own ingest solution. It is built with the best available
hardware using primarily FFmpeg among other software applications. They report that
once IU made the decision to use FFV1 with the Matroska wrapper and clearly specified
metadata requirements, very little had to be adjusted to have the Memnon solution

meet IU production requirements and fully integrate it into the Memnon Production
Asset Management (PAM) system.

